Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Transl Med ; : eadd6383, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2272197

ABSTRACT

The U.S. Food and Drug Administration only gave emergency-use-authorization of the BNT162b2 and the mRNA-1273 SARS-CoV-2 vaccines for infants 6 months and older in June 2022. Yet, questions regarding the durability of vaccine efficacy, especially against emerging variants, in this age group remain. We demonstrated previously that a two-dose regimen of stabilized prefusion Washington SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or purified S-2P mixed with 3 M-052, a synthetic toll-like receptor (TLR) 7/8 agonist, in a squalene emulsion (Protein+3 M-052-SE) was safe and immunogenic in infant rhesus macaques. Here, we demonstrate that broadly neutralizing and spike-binding antibodies against variants of concern (VOC), as well as T cell responses, persisted for 12 months. At one year, corresponding to human toddler age, we challenged vaccinated rhesus macaques and age-matched non-vaccinated controls intranasally and intratracheally with a high-dose of heterologous SARS-CoV-2 B.1.617.2 (Delta). Seven of eight control rhesus macaques exhibited severe interstitial pneumonia and high virus replication in the upper and lower respiratory tract. In contrast, vaccinated rhesus macaques had faster viral clearance with mild to no pneumonia. Neutralizing and binding antibody responses to the B.1.617.2 variant at the day of challenge correlated with lung pathology and reduced virus replication. Overall, the Protein+3 M-052-SE vaccine provided superior protection to the mRNA-LNP vaccine, emphasizing opportunities for optimization of current vaccine platforms. Notably, the observed efficacy of both vaccines one year after vaccination supports the implementation of an early life SARS-CoV-2 vaccine.

2.
Cell Rep ; 41(5): 111573, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2113996

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), can induce a plethora of neurological complications in some patients. However, it is still under debate whether SARS-CoV-2 directly infects the brain or whether CNS sequelae result from systemic inflammatory responses triggered in the periphery. By using high-resolution microscopy, we investigated whether SARS-CoV-2 reaches the brain and how viral neurotropism can be modulated by aging in a non-human primate model of COVID-19. Seven days after infection, SARS-CoV-2 was detected in the olfactory cortex and interconnected regions and was accompanied by robust neuroinflammation and neuronal damage exacerbated in aged, diabetic animals. Our study provides an initial framework for identifying the molecular and cellular mechanisms underlying SARS-CoV-2 neurological complications, which will be essential to reducing both the short- and long-term burden of COVID-19.


Subject(s)
COVID-19 , Nervous System Diseases , Animals , SARS-CoV-2 , Neuroinflammatory Diseases , Neurons , Primates
3.
Cell reports ; 2022.
Article in English | EuropePMC | ID: covidwho-2057561

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), can induce a plethora of neurological complications in some patients. However, it is still under debate if SARS-CoV-2 directly infects the brain or if CNS sequelae result from systemic inflammatory responses triggered in the periphery. Using high-resolution microscopy, we investigated whether SARS-CoV-2 reaches the brain and how viral neurotropism can be modulated by aging in a non-human primate model of COVID-19. Seven days after infection, SARS-CoV-2 was detected in the olfactory cortex and interconnected regions, accompanied by robust neuroinflammation and neuronal damage exacerbated in aged diabetic animals. Our study provides an initial framework for identifying the molecular and cellular mechanisms underlying SARS-CoV-2 neurological complications, which will be essential to reducing both the short- and long-term burden of COVID-19. Graphical Beckman et al. show that SARS-CoV-2 proteins are found in olfactory areas of the brains of Rhesus macaques at 7 days post-infection. In addition to direct neuronal infection, extensive neuroinflammation and vascular disruptions are observed, and these effects are exacerbated in aged, diabetic animals.

4.
Microbiol Spectr ; 9(3): e0139721, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1532983

ABSTRACT

Human clinical studies investigating use of convalescent plasma (CP) for treatment of coronavirus disease 2019 (COVID-19) have produced conflicting results. Outcomes in these studies may vary at least partly due to different timing of CP administration relative to symptom onset. The mechanisms of action of CP include neutralizing antibodies but may extend beyond virus neutralization to include normalization of blood clotting and dampening of inflammation. Unresolved questions include the minimum therapeutic titer in the CP units or CP recipient as well as the optimal timing of administration. Here, we show that treatment of macaques with CP within 24 h of infection does not reduce viral shedding in nasal or lung secretions compared to controls and does not detectably improve any clinical endpoint. We also demonstrate that CP administration does not impact viral sequence diversity in vivo, although the selection of a viral sequence variant in both macaques receiving normal human plasma was suggestive of immune pressure. Our results suggest that CP, administered to medium titers, has limited efficacy, even when given very early after infection. Our findings also contribute information important for the continued development of the nonhuman primate model of COVID-19. These results should inform interpretation of clinical studies of CP in addition to providing insights useful for developing other passive immunotherapies and vaccine strategies. IMPORTANCE Antiviral treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain very limited. One treatment that was explored beginning early in the pandemic (and that is likely to be tested early in future pandemics) is plasma collected from people who have recovered from coronavirus disease 2019 (COVID-19), known as convalescent plasma (CP). We tested if CP reduces viral shedding or disease in a nonhuman primate model. Our results demonstrate that administration of CP 1 day after SARS-CoV-2 infection had no significant impact on viral loads, clinical disease, or sequence diversity, although treatment with normal human plasma resulted in selection of a specific viral variant. Our results demonstrate that passive immunization with CP, even during early infection, provided no significant benefit in a nonhuman primate model of SARS-CoV-2 infection.


Subject(s)
COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antiviral Agents/therapeutic use , COVID-19/immunology , Disease Models, Animal , Humans , Immunity , Lung/pathology , Macaca mulatta , Pandemics , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Virus Replication
5.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750501

ABSTRACT

CD4 T follicular helper (T fh ) cells are important for the generation of long-lasting and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that, following infection with SARS-CoV-2, adult rhesus macaques exhibited transient accumulation of activated, proliferating T fh cells in their peripheral blood on a transitory basis. The CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes, reflective of the interferon-rich cytokine environment following infection. We also observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies but delayed or absent IgA antibodies. Our data suggest that a vaccine promoting Th1-type Tfh responses that target the S protein may lead to protective immunity.

6.
PLoS Pathog ; 17(7): e1009688, 2021 07.
Article in English | MEDLINE | ID: covidwho-1298083

ABSTRACT

There is an urgent need for effective therapeutic interventions against SARS-CoV-2, including new variants that continue to arise. Neutralizing monoclonal antibodies have shown promise in clinical studies. We investigated the therapeutic efficacy of a combination of two potent monoclonal antibodies, C135-LS and C144-LS that carry half-life extension mutations, in the rhesus macaque model of COVID-19. Twelve young adult macaques (three groups of four animals) were inoculated intranasally and intra-tracheally with a high dose of SARS-CoV-2 and 24 hours later, treated intravenously with a high (40 mg/kg) or low (12 mg/kg) dose of the C135-LS and C144-LS antibody combination, or a control monoclonal antibody. Animals were monitored for 7 days. Compared to the control animals, animals treated with either dose of the anti-SARS-CoV-2 antibodies showed similarly improved clinical scores, lower levels of virus replication in upper and lower respiratory tract, and significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. In conclusion, this study provides proof-of-concept in support of further clinical development of these monoclonal antibodies against COVID-19 during early infection.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , Lung/pathology , SARS-CoV-2/immunology , Virus Replication , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/pathology , COVID-19/virology , Disease Models, Animal , Female , Lung/diagnostic imaging , Macaca mulatta , Male , Multivariate Analysis , Radiography , Respiratory System/virology , SARS-CoV-2/physiology , Time Factors , Treatment Outcome , Virus Replication/immunology
7.
Nat Commun ; 12(1): 541, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1044084

ABSTRACT

CD4 T follicular helper (Tfh) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates Tfh cells and stimulates the germinal center (GC) response is an important question as we investigate vaccine induced immunity against COVID-19. Here, we report that SARS-CoV-2 infection in rhesus macaques, either infused with convalescent plasma, normal plasma, or receiving no infusion, resulted in transient accumulation of pro-inflammatory monocytes and proliferating Tfh cells with a Th1 profile in peripheral blood. CD4 helper cell responses skewed predominantly toward a Th1 response in blood, lung, and lymph nodes. SARS-CoV-2 Infection induced GC Tfh cells specific for the SARS-CoV-2 spike and nucleocapsid proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Collectively, the data show induction of GC responses in a rhesus model of mild COVID-19.


Subject(s)
COVID-19/immunology , Germinal Center/immunology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Th1 Cells/immunology , Animals , Antibodies, Viral/blood , COVID-19/therapy , Cell Line , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/immunology , Disease Models, Animal , Female , Humans , Immunity, Humoral/immunology , Immunization, Passive , Immunogenicity, Vaccine/immunology , Immunoglobulin G/blood , Macaca mulatta , Male , Phosphoproteins/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
8.
bioRxiv ; 2020 Jul 08.
Article in English | MEDLINE | ID: covidwho-663492

ABSTRACT

CD4 T follicular helper (T fh ) cells are important for the generation of long-lasting and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that, following infection with SARS-CoV-2, adult rhesus macaques exhibited transient accumulation of activated, proliferating T fh cells in their peripheral blood on a transitory basis. The CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes, reflective of the interferon-rich cytokine environment following infection. We also observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies but delayed or absent IgA antibodies. Our data suggest that a vaccine promoting Th1-type Tfh responses that target the S protein may lead to protective immunity.

SELECTION OF CITATIONS
SEARCH DETAIL